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The flow of a viscous fluid through axially symmetric pipes and symmetrical 
channels is investigated under the assumption that the Reynolds number is 
small enough for the Stokes flow approximations to be made. It is assumed that 
the cross-section of the pipe or channel varies sinusoidally along the length. The 
flow is produced by a prescribed pressure gradient and by the variation in cross- 
section that occurs during the passage of a prescribed sinusoidal peristaltic wave 
along the walls. The theory is applied in particular to two extreme cases, peri- 
staltic motion with no pressure gradient and flow under pressure along a pipe 
or channel with fixed walls and sinusoidally varying cross-section. Perturbation 
solutions are found for the stream function in powers of the ratio of the amplitude 
of the variation in the pipe radius or channel breadth to the mean radius or 
breadth respectively. These solutions are used to calculate, in particular, the 
flux through the pipe or channel for a given wave velocity in the first case and for a 
given pressure gradient in the second case. With a suitable notation it is possible 
to combine the analysis required for the two cases of pipe and channel flow. 

1. Introduction 
The study of the flow of an incompressible viscous liquid is greatly simplified 

if discussion is limited to Stokes flow in which the Reynolds number is small 
enough for the inertia forces to be neglected in comparison with the viscous 
forces so that the equations of motion become linear. 

In  this paper we consider two-dimensional flow through a symmetrical channel 
and axially symmetric flow through a pipe of circular cross-section. In  each case 
the boundary varies sinusoidally. 

Two causes of motion are considered. It will be assumed that there is a pre- 
scribed pressure gradient along the pipe or channel and that a progressive wave 
passes along the walls. It will be seen that, provided the frequency of oscillation 
is small enough, this peristaltic motion is governed by the usual equations for 
steady Stokes flow. Thus the two extreme cases, of motion caused solely by the 
variation in cross-section and of motion under a pressure gradient when the walls 
are fixed can be treated together. Moreover, the two cases of pipe flow and channel 
flow can be treated together by taking advantage of the notation of generalized 
axi-symmetric potential theory to develop the theory in a form which is applic- 



732 J .  C. Burns and T .  Parkes 

able to each case, leaving only the detailed calculations to be carried out sepa- 
rately. 

It will be convenient, where it is not necessary to distinguish between channel 
flow and pipe flow, to use ‘tube’ to denote either the symmetric channel or the 
axisymmetric pipe and ‘radius of the tube’ to denote half the breadth of the 
channel or the radius of the pipe. 

The problem is solved by expanding the stream function which determines 
the flow as a Fourier series involving two infinite sets of unknown coefficients. 
The boundary conditions on the wall of the tube give a set of linear equations 
which can be solved for these coefficients. Following closely the method used by 
Taylor (1951) in a similar problem, we obtain a perturbation solution in which 
these coefficients are obtained as power series in q/h, the ratio of the amplitude of 
the variation of the tube radius to the mean tube radius. 

Although peristaltic motion of a viscous fluid through pipes and channels 
does not seem to have been discussed previously, the particular case of flow 
through a fixed tube under a prescribed pressure gradient has been treated by a 
number of authors. Langlois (1964) has discussed flow along channels of varying 
breadth and obtained approximate solutions in several different cases. Gheorgita 
(1959) has found solutions to the first-order in q for symmetrical channels in which 
the breadth varies along the length according to a cosine law and has also given 
Grst-order solutions in cases in which the distance of each wall from the centre 
plane varies periodically along the length with the same frequency but the channel 
is not symmetrical. Belinfante (1962) has considered flow of a viscous fluid along 
pipes and channels in which the radius or breadth varies along the length accord- 
ing to a cosine law. He also has obtained solutions for the Stokes flow approxima- 
tion correct to the first-order in qlh. He used these solutions as a basis for solutions 
of the Navier-Stokes equations in powers of the Reynolds number of the flow. 
He remarks that he has also obtained solutions of the Stokes flow problem to the 
second-order in q/h for both pipe and channel flow. Burns (1965) has used the 
methods of the present paper to obtain results for both pipes and channels, the 
essential features of which are included (with some corrections) as a special case 
of the general problem of peristaltic flow with a pressure gradient considered 
here. 

2. Statement of the problem 
The wall of the tube is defined by the equation 

y = h+qCOSZ(x-ut) (1) 
so that a progressive wave of amplitude 7, velocity v and wavelength h = 27~11 
passes along the tube in the positive x-direction. It will frequently be convenient 
to write z = x- ut. The (x, y)-plane is a meridian plane of the tube, the axis OX 
being along the axis of symmetry and the axis O Y  normal to OX. Let the velo- 
city components in the x, y directions be u, 21 respectively (see figure 1). If u = 0, 
the wall of the tube is a fixed cosine wave. 

Steady Stokes flow in the absence of body forces is determined by the equations 

v . v = o ,  p v x o = - v p  ( 2 )  
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in which v is the velocity, ,LL is the viscosity, p is the pressure and w = V x v is 
the vorticity. These same equations are valid also for the unsteady flow, provided 
the oscillations of the walls are such that c/vZ = o(1) where v is the kinematic 
viscosity (see Rosenhead 1963, p. 169, for example.) 

FIGURE 1. 

If we introduce a stream function $ and let w = 1 0 1 ,  the notation introduced 
by Weinstein (1953) enables us to write the equations satisfied by $ and w as 

L-,fll.)= -!Ik&, (31 

L-k(ykw) = 0, (4) 

where 

and k = 0, 1 according as the flow is two-dimensional or axi-symmetrical. 
The following conditions must be satisfied. On the axis of symmetry we can 

take $ = 0 and we must have w -+ 0 as y + 0. On the outer boundary of the flow 
the fluid must have the same velocity as the wall of the tube. It will be assumed 
in the first instance that the particles of the tube wall move in straight lines per- 
pendicular to the axis of the tube so that the boundary condition is 

This condition requires that the wall of the tube be extensible. A modified bound- 
ary condition will be considered later. 

The problem is to solve (3) and (4) for $ and w subject to these conditions on 
the axis of symmetry and the wall of the tube. 

Since the boundary varies periodically with z and is symmetrical about z = 0, 
it follows that both $ and w are even periodic functions of x with wavelength A. 
It is easily shown that the pressure is constant on the sections z = 0, A, 2h.. . 
and that the pressure difference between successive points of maximum cross- 
section is always the same. The pressure gradient which produces the flow must 
be assumed known and we shall let the pressure drop over a wavelength have the 
prescribed value P. 
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3. Fourier series for the stream function 

length A = 2n/l, can be expressed as Fourier cosine series in the form 
The functions $(z, y) and w(z,  y), being even, periodic functions of z of wave- 

If (6) and (7) are substituted in (3) and (4) and the coefficients of terms in 
cos nlz compared, then for n 2 0,  $n(y) and w,(y) satisfy the equations 

These equations have to be solved under the conditions that $, + 0 and w,& -+ 0 

The solutions to (9) satisfying these conditions are 
asy+O. 

ykw, = -A,yk+l 

ykw, = - A  nYiC(k+l) l#k+dnzY), and for n > 1 (10) 

where A,, A ,  are arbitrary constants and I , ( x )  is a modified Bessel function of the 
first kind of order v. 

When w, in (8) is replaced by the expressions given in (10) then the resulting 
equations are of a type for which particular integrals can be found (Burns 1966) 
and the complementary functions are of course the general solutions of (9). The 
functions @,(y) which satisfy these equations and the condition @, +- 0 as 
y -+ 0 are found without difficulty and when these are substituted in (6) the 
resulting expression for $ ( x ,  y) is 

(11) 
A + 2 !/@+I’ [ 2 Y l$(k-dnzY) f Bnl&&+l) (nzY)] nzz* 

n=l  

The arbitrary constants A,, R, for n b 0 must be determined from the condition 
(5) ,  that the fluid on the boundary has the same velocity as the wall of the tube, 
together with the condition that the pressure drop per wavelength is P. 

Since the pressure is constant over the sections z = 0,  h i t  follows that the pres- 
sure drop between these sections can be obtained by integrating ap/az along the 
line y = 0. 

Equation (2) gives 
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so that using (7) and (10) we find that 

where the coefficients f, are constants. Integration of (12) from z = 0 to z = 2n/l 
gives - 

PI 
-2pn(k+1)'  

Thus the constant A ,  is known in terms of the prescribed pressure gradient. The 
remaining boundary condition leads to equations sufficient to determine the 
constants B,, A,, B, (n  2 1) in terms of A, and CT. 

At this point it becomes convenient to give separate (although closely similar) 
discussions of the two cases of channel flow and pipe flow. 

For channel flow, k = 0 and the stream function becomes 

A 
I@,Y) = --Oy3-t-Boy 6 

- y cosh nly + Bn sinh nly (14) 

The replacement of the Bessel functions I&nly) and I-)(nZy) by expressions 
involving cosh nly and sinh nly leads to a considerable simplification in the de- 
tailed analysis which follows. 

For pipe flow, k = 1 and the stream function becomes 

It is convenient to introduce new coefficients as follows. 
For channel flow, let 

a, = *A,, b, = B, 

and for pipe flow, let 

and, forn 2 1, 

a, = i A o ,  b, = 2B0, 

b, = B,. An a =-  
2nl' 

The stream function for channel flow then becomes 

W 

+(z, y) = 3 a, y3 + boy + {any cosh nly + b, sinh nly} cos nlz, (18) 
n = l  

where b,; a,, b, (n > 1) are to be found in terms of a, and CT from the conditions 

a p p y  = 0 and a$pz  = - Z C T ~  sin lz  on y = h + q cos ZZ, (19) 

which are obtained from (5) by putting k = 0. 
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The stream function for pipe flow becomes 
m 

n=l 
$(z ,  y) = $aOy4 + +b0 y2 + E y{a,yI,(nly) + b,Il(nZy)} cos nlz,  (20) 

where b,; a,, b, (n 2 1) are to be found in terms of a, and cr from the conditions 

which are obtained from ( 5 )  by putting k = 1. 

4. Evaluation of the coefficients a,, b, 

equation y = h + 7 cos Zz = y1 say, lead to the following equations. 
The boundary conditions (19), (21) at the tube wall, which in each case has 

For channel flow, 
00 

a,y; + b, + x [(a, + nZb,) coshnZyl + nZa,yl sinh nZyl] cos nlz = 0 (32)  
n=l 

m 

and [anyl cosh nly, + b, sinh nZyl] n sin nlz = rcr sin b; 
n=l 

(23) 

for pipe flow, 
m 

n=l  
aoy2, + bo + C [(2a, + nlb,) Io(nZyl) + nZa,ylIl(nZyl)] cos nZz = 0 (24) 

m 

and C. [a,y,Io(nlyl) + b,Il(nZyl)] n sin nZz = rg sin Zz. 
n=l  

For channel flow, cosh n ly ,  and sinh nZyl and for pipe flow, Io(nZyl) and Il(nZyl) 
are expanded in powers of cos Zz. Substitution in ( 2 2 ) ,  (23) and (34), (25) leads, 
in each case, to terms of the form cosp lz cos nlz and cos p Zz sin nlz which are ex- 
panded in Fourier cosine and sine series respectively. Finally, the coefficients of 
terms in cos rlz and sin rZx in the resulting equations are equated and linear equa- 
tions for b,; a,, b, (n 2 l )  are obtained. In  each case, these are of the form 

n=l  a=l 
m m 

m m 

where all the coefficients p,,, q,,, h,,, k,,, c, are known. For the purposes of the 
perturbation solution used here, these are expanded in powers of Zr and the lead- 
ing term of the series for each of the first four involves Zq raised to the power 
In - rl while c, is of the order (Zq)". It follows that a, and b, are of order ( I T ) ,  and it 
turns out that they are obtained as series in the form 

00 \ 
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At this stage we assume that Zy is small and calculate $(z,y) to order (IT)". 
Imposing this restriction, and comparing coefficients of powers of Zy in (26), 
gives a set of equations which can be solved for a, and p,,. 

To find $(z, y) to order fly)", 4(n+ I)(%+ 2 )  equations are needed but these can 
be solved in pairs. Thus to find $to order (h,~)~needs 15 equations. This is the order 
of most of the calculations in the rest of the paper. 

5. Calculation of the flux through the tube 
To find the flux through the tube it is necessary to evaluate the stream function 

$(z,y) at a point on the boundary y = h + y  cos Zx. For any value of x, this flux 
varies periodically with the time. In  fact because a,, b, are determined as power 
series in Zy it follows that the flux $ is also a power series in Zy. Alternatively we 
can write $ as a power series in y/h, i.e. 

$ = $0 + $l(V/h) + $z(7/h)z + * * - 9  

where $, is a periodic function of z. 
What is wanted is the average flux per cycle and this can be found by inte- 

grating $ at a point on the boundary over one period. Doing this removes all the 
odd powers of q/h for it is easily seen that 

A 

0 
loa$ldx = j- &ax = ... = 0. 

The mean flux is then 

- - -  
and the expressions obtained for k,, $4 are as follows: 
(a) for channel flow, 

- - 
$o = - $aoh3, $, = - h3[a, + Pa,, sinh Zh + +Z2a], 

- 
$4 = - Z3h4[Qall(Zh sinh Zh + 2 cosh Zh) + a13 Zh sinh Zh 

+ +azz(2Zh cosh 2Zh + sinh 2Zh)l; (29) 
(b )  for pipe flow 

- - 
$, = - $aoh4, $, = - $h4[3a, + 2Z2a1,11(Zh) + Pa], 

- 
$4 = - h4[&a, + +6 z3ha11(310 (lh) + zhli(lh)) + @4h2a1311(zh) 

+@3ha,,(21hI,(21h) + T1(21h)) +&12cr]. (30) 

In  each case all, a13, aZ2, are obtained as indicated in $4. 

6. Numerical calculations of flux, streamlines and velocity distribution 
In  the numerical calculations the two causes of motion have been treated 

separately, i.e. we consider peristaltic flow with no pressure gradient, given by 
putting a, = 0 and flow through a fixed tube with a prescribed pressure gradient, 
given by putting cr = 0. 

47 Fluid Mech. 29 
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6.1 Peristaltic $ow 
Flux through tube 

In  the case of channel flow the non-dimensional flux 1$/g has been calculated 
both to order (q/h)2 and to order (n/h)4 for a range of values of the two non- 
dimensional parameters 17 and lh. These results are displayed in figure 2 by show- 
ing the graphs of lp/cr against the ratio T/h for values of lh ranging from 0.25 
to 2.0. 

0.3 

i 
I 
I 

Ih = 1 

/'I 

Illh 

FIGURE 2. Peristalsis. Flux through channel. 
2 0(Il/h)2; - 1 0(7Im4. --- 

For pipe flow, the non-dimensional flux l2$/g has been similarly calculated 
and the results are shown in the same way in figure 3. 

Throughout the development of the theory there has been an implicit assump- 
tion that conditions ensuring the convergence of the various processes are satis- 
fied. It is clear that, for a given value of lh, a perturbation solution in powers of 
q/h can be expected to converge only for values of r / h  not exceeding some value 
depending on Zh. Physically of course q/h  < 1. 

It can be seen from figures 2 and 3 that, for each valueof lh, as q/h increases, the 
curves for the non-dimensional flux to order (n/hj2 and to order (?;r/h)4 begin to 
diverge appreciably which suggests that the limit to the convergence of the process 
has been reached. The calculations have also been carried out to order (q/h)6 and 
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the curve for 1$/u to this order lies between the curves for l+/u to order (q/h)2 
and to order ( ~ / h ) ~ .  This suggests that the curve for order (q/h)2 is the upper 
bound and the curve for order ( ~ / h ) ~  is the lower bound. 

A point has been indicated for each value of lh, where the ( ~ / h ) ~  term first 
becomes one-tenth of the (q/h)2 term. Hence if the application of the perturba- 
tion theory is limited to values of q/h below those indicated then the flux through 
the tube will be known to an accuracy of better than 10 yo. This is an arbitrary 
criterion of course and Taylor (1951) uses 25% instead of 10 yo. 

04 

0.3 

- 0.2 

0.1 

0 01 0 2  0 3  0.4 

Tlh 

FIGURE 3. Peristalsis. Flux through pipe. 
1 o(T/W; - t 0(T/h)4. --- 

It will be seen from figures 2 and 3 that the indicated values of q/h decrease as 
Zh increases. 

Figure 2 shows that if q/h is constant, the non-dimensional flux per unit length 
normal to the plane of motion through a channel of mean breadth h, for a given 
wave velocity (T and given wavelength A, is roughly proportional to h (i.e. to the 
area of the cross-section). If 7 is constant then the flux per unit length is roughly 
inversely proportional to h. 

Figure 3 shows that if q/h is constant, the flux through a pipe of mean radius 
h is similarly roughly proportional to h2 (i.e. to the area of cross-section) and that 
if q is constant then the flux is roughly independent of h. 

47-2 
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Streamlines 

Figure 4 shows the streamlines in two-dimensional flow for the case lh = 0-25 
and q/h = 0.1 taking 9 to order (7/h)2. The streamlines have only been drawn for 
positive y but of course they are symmetrical about the z-axis which has been 
taken as 9 = 0. The streamline $ = 0 in addition to lying along the z-axis, also 
runs approximately perpendicular to the z-axis at lz = 0.567~ and lz  = 1 . 4 4 ~  
where z = 0 corresponds to a peak on the boundary. 

At the boundary, y = h + 7 cos Zz, the streamlines are parallel to the y-axis. 
0 3 T  

0 02 

0015 

0.01 

0 005 

0 n zn in jn 277 -in - in  an t. i n  

12 

FIGURE 4. Peristalsis. Streamlines in channel flow with Eh = 0.25 and 
111 = 0.025. Streamlines correspond t o  indicated vaIues of 1$/c. 

Velocity distributions 

Figures 5 and 6 show the distribution of the velocity parallel to and perpendicu- 
lar to the axis of the channel in two-dimensional flow for the case Zh = 0.25 and 
q/h = 0.1. In  both directions the flow is symmetrical about lz = T (i.e. a trough 
in the boundary). The maximum velocity for the case considered is 0.16a along 
the axis of the channel and 0.25a a t  the boundary, perpendicular to the axis. 

6.2. Fixed boundary with prescribed pressure gradient (i.e. a = 0)  

Flux through tube 

The ratio $/Po has been computed for both channel flow and pipe flow for 
several values of lh and plotted against q/h in figures 7 and 8. In  each case the flux 
is given to order (q/h)2 and to order (7/h)4. 

As in the case of peristaltic flow the curves for $/$o to order (r]/h)2 and to order 
( ~ / h ) ~  diverge appreciably. Points have been indicated on the curves where the 
(7/h)4 term first becomes one-tenth of the ( ~ / h ) ~  term so that, for values of iy/h 
below those indicated, the flux through the tube will be known to better than 

It should be noted that increasing the amplitude 7 for a given h and Z has 
opposite effects in the two cases considered. In  peristaltic motion, the flux 
through the tube increases with 7 but with a prescribed pressure gradient and 
fixed boundary, the flux decreases as 7 is increased. 

The flux of a viscous fluid through a uniform two-dimensional channel or 
through a uniform pipe of circular cross-section is given by.po which is the value 
of $ when r,~ = 0. 

10 yo. 
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For two-dimensional flow the flux per unit length normal to the plane of motion 
through a uniform channel of breadth 2h is 2g0, while for axi-symmetrical flow 
the flux through a uniform pipe of radius h is 2qhO. I++,, is given in the two cases 
by (39) and (30) and the values given there can be expressed in terms of the original 
quantities by using (16), (17) and (13) noting, however, that P ,  the pressure drop 
over a wavelength should now be replaced by P027r/1 where Po is the pressure 
drop per unit length. The resulting values of the flux are 2P0h3/3p for the channel 
and 7rPOh4/8,u for the pipe. 

- _  

0.3 - 

3 0 0.1 0.2(u/lT) fn in  n :x  fn  ax 2n 

12 

FIGURE 5. Peristalsis. Velocity distribution along the axis in channel flow 
with Eh = 0.25 and Eq = 0.025. 

I I 1 1 I I I 1 I 
3 5 3 7 0 a. f n  4x x .Tn pl zn 2n 

12 

FIGURE 6. Peristalsis. Velocity distribution normal t o  the axis in channel flow 
with lh = 0.25 and 19 = 0.025. 

These are the well-known values obtained by solving the full Navier-Stokes 
equations of motion. For this simple type of flow, all the non-linear terms vanish 
and the Stokes equations give the flow exactly. 

Streamlines 

The streamlines in this case of steady flow follow the expected pattern, i.e. 
.approximate cosine curves whose amplitude increases from 0 on the axis of sym- 
metry to 7 on the boundary. Consequently they are not included in graphical 
form. Neither are the velocity distributions. 
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7. Other boundary conditions 
The boundary conditions ( 5 )  used throughout the paper, require that the wall 

of the tube be extensible. The equations have also been solved for boundary 
conditions similar to those used by Taylor (1951). In  the case of two-dimensional 
flow these correspond to an inextensible wall. 

I I I I 
0 0 1  0.2 0.3 0.4 

slh 
FIGURE 7. Fixed boundary. Flux through channel. 

- - -, O(T/W -, o(m4. 

0 2  
0 0 1  0 2  0.3 0.4 

Illh 
FIGURE 8. Fixed boundary. Flux through pipe. 

, O(v /W;  ~ 9 o(r /h)4 .  - - _  

These boundary conditions are, to order ( l ~ ) ~ ,  

_ -  
0. 32 64 

2, - = (17 - ?):sin lz + (b')3  sin 312 
0- 8 

and 

ony  = h+rcosZz. 
The difference between the two solutions is very small and can be ignored. 
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8. Conclusion 
The perturbation method of solving equations (26) for the coefficients in the 

Fourier series (11) for the stream functions has been shown to be satisfactory and 
an indication of the range of convergence of the process has been obtained. 

It has been shown further that a reasonable estimate of the flux through a 
tube (whether produced by peristaltic motion of the tube wall in the absence of a 
pressure gradient or by a constant pressure gradient in a fixed tube) is obtained 
from the first two terms of the series giving the flux in powers of the square of the 
relative variation in the radius. On the other hand, not unexpectedly, it has 
turned out that the process has only a moderate range of convergence. For 
applications to peristaltic motion this should not be an irksome restriction; 
we have been unable to find any data on the relative amplitudes in naturally 
occurring peristaltic motion but for the flow of blood along arteries the ratio of 
q/h is given by McDonald & Taylor (1959) as 0.04. Nevertheless, particularly for 
flow through fixed tubes, it  would be desirable to have solutions for values of 
Ih and q/h outside the range provided by the present method, and a more direct 
numerical approach to solving equations (26) is at  present under consideration. 
Preliminary work has shown that for small q/h not many coefficients are needed 
and the two methods agree very closely. For large q/h more coefficients are needed 
and it becomes impractical to do all the calculations without the aid of a digital 
computer. 
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